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Characteristics of chaos evolution in one-dimensional disordered nonlinear lattices
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We numerically investigate the characteristics of chaos evolution during wave-packet spreading in two typical
one-dimensional nonlinear disordered lattices: the Klein-Gordon system and the discrete nonlinear Schrödinger
equation model. Completing previous investigations [Ch. Skokos et al., Phys. Rev. Lett. 111, 064101 (2013)], we
verify that chaotic dynamics is slowing down for both the so-called weak and strong chaos dynamical regimes
encountered in these systems, without showing any signs of a crossover to regular dynamics. The value of the
finite-time maximum Lyapunov exponent � decays in time t as � ∝ tα� , with α� being different from the
α� = −1 value observed in cases of regular motion. In particular, α� ≈ −0.25 (weak chaos) and α� ≈ −0.3
(strong chaos) for both models, indicating the dynamical differences of the two regimes and the generality of the
underlying chaotic mechanisms. The spatiotemporal evolution of the deviation vector associated with � reveals
the meandering of chaotic seeds inside the wave packet, which is needed for obtaining the chaotization of the
lattice’s excited part.
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I. INTRODUCTION

Disordered systems are spatially extended models of many
degrees of freedom trying to mimic heterogeneity in na-
ture. Typically they are obtained by attributing to one of
the system’s parameters a different, random value for each
degree of freedom. Such systems offer a perfect test bed for
understanding the dynamical properties of multidimensional
Hamiltonian models, while at the same time they are of
significant practical interest as they can be used for describ-
ing several important physical processes, for example, the
conductivity of materials, the propagation of light in optical
waveguides, the dynamics of Bose-Einstein condensates, the
structural behavior of granular solids, and the dynamics of
DNA molecules.

It is well known that in linear disordered systems energy
excitations remain localized. This phenomenon was studied
theoretically by Anderson [1] (called Anderson localization)
and was also observed experimentally [2–9]. The effect of
nonlinearity in disordered systems has attracted extensive at-
tention in the past decade, in theory and simulations [10–51],
as well as in experiments [52–55]. A fundamental question
in this context is what happens to energy localization in the
presence of nonlinearities.

Extensive numerical studies of the effect of nonlinearity
on the propagation of initially localized energy excitations in
disordered variants for two typical one-dimensional Hamilto-
nian lattice models, namely, the Klein-Gordon (DKG) oscil-
lator chain and the discrete nonlinear Schrödinger (DDNLS)
equation, determined the statistical characteristics of energy
spreading and showed that nonlinearity destroys localization
[12,13,18,19,21,24,25,38]. In those papers the existence of

*Corresponding author: haris.skokos@uct.ac.za

different dynamical spreading regimes, namely, the so-called
weak and strong chaos regimes, was revealed, their partic-
ular dynamical characteristics were determined, and their
appearance was theoretically explained. In particular, it was
theoretically predicted and numerically verified that nonlin-
earity leads to the subdiffusive spreading of wave packets
in accordance with the observations of [10,11,14,56]. More
specifically, it was shown that in the case of one-dimensional
lattices the wave packet’s second moment m2 grows in time
t as m2 ∝ ta , with a = 1/3 and a = 1/2 for the weak and
strong chaos regimes, respectively. A physical mechanism of
this subdiffusion in the DDNLS model has been suggested in
[34,50], where the exponent a = 1/3 has been explained as
well. Experimental evidence of such subdiffusive spreadings
in Bose-Einstein condensates was provided in [55]. Subd-
iffusive spreading was also numerically observed for two-
dimensional disordered lattices [14,33,44].

Although nowadays it is common knowledge that en-
ergy spreading in disordered lattices is a chaotic process,
the characteristics of this chaotic behavior have not been
studied in detail. An attempt to systematically investigate
chaos in one-dimensional disordered nonlinear lattices was
performed in [38], where the chaotic wave-packet spreading
in the weak chaos spreading regime of the DKG model was
studied in detail. For that particular case it was shown that
although chaotic dynamics slows down, it does not cross
over into regular dynamics. In addition, that work provided
some numerical evidence on how chaotic behavior appears in
disordered lattices by indicating that chaotic hot spots, where
few lattice sites seem to behave more chaotically than others,
meander through the system as time evolves, sustaining its
chaoticity.

In [38] the computation of the most commonly used chaos
indicator, the finite-time maximum Lyapunov exponent �

[57–59], was used to verify the DKG system’s chaoticity in
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the weak chaos regime. It was found that, as the number
of lattice’s excited degrees of freedom increases when the
energy spreads to more lattice sites, � decreases in time t

following the power law � ∝ t−0.25, which is different from
the behavior � ∝ t−1 observed in the case of regular motion.
Thus, the system becomes less chaotic, while the dynamics
does not show any tendency to cross over to regular behavior
(at least up to the computationally accessible times) as it was
speculated in [22,26].

Chaoticity by itself is not enough to guarantee thermal-
ization of disordered systems [40] and support subdiffusion
theories. The needed additional ingredient is the spatiotempo-
ral fluctuations of the chaotic seeds inside the excited part of
the lattice, something which was shown in [38] through the
time evolution of the deviation vector (i.e., the displacement
from the studied orbit in the system’s phase space) used for
the computation of �. Since this vector eventually aligns with
the most unstable direction in the system’s phase space, the
time evolution of its coordinates showed that localized chaotic
seeds meander through the wave packet, contributing in this
way to its thermalization.

In the present paper we extend these investigations by
considering not only the weak chaos spreading regime but also
strong chaos cases, in order to identify possible similarities
or differences in the way chaos evolves in these regimes. By
performing extensive numerical computations of �, as well
as of the related deviation vector distributions (DVDs), we in-
vestigate the characteristics of chaoticity in detail. We perform
our investigations not only for the DKG model (completing in
this way the study of [38]) but also for the DDNLS model in
order to verify the generality of our findings.

The paper is organized as follows. In Sec. II we present
the two Hamiltonian models we consider in our study and
provide information about the numerical tools we use in our
investigations: computed quantities, integration techniques,
etc. In Sec. III we present our numerical findings about
the chaotic behavior of the DKG and the DDNLS systems
for various parameter cases, emphasizing the computation
of the finite-time maximum Lyapunov exponent � and the
corresponding DVDs. In Sec. IV we summarize our results
and discuss their significance.

II. MODELS AND COMPUTATIONAL METHODS

In our study we consider two Hamiltonian models of one-
dimensional nonlinear disordered lattices. The first one is the
quartic DKG lattice chain of N oscillators described by the
Hamiltonian function

HK =
N∑

l=1

p2
l

2
+ ε̃l

2
q2

l + q4
l

4
+ 1

2W
(ql+1 − ql )

2, (1)

where ql and pl respectively represent the generalized po-
sition and momentum of site l, ε̃l are disorder parameters
of the on-site potential whose values are uniformly chosen
from the interval [ 1

2 , 3
2 ], and W is the disorder strength. The

corresponding equations of motion are

q̈l = −
[
ε̃lql + q3

l + 1

W
(2ql − ql−1 − ql+1)

]
. (2)

The Hamiltonian function (1) is an integral of motion, so its
value HK (usually referred to as the system’s energy) remains
constant and it also serves as a nonlinearity control parameter.

The second model is the DDNLS system, having the
Hamiltonian function

HD =
N∑

l=1

εl|ψl|2 + β

2
|ψl|4 − (ψl+1ψ

∗
l + ψ∗

l+1ψl ). (3)

Here ψl is the complex wave function at site l, β � 0 is the
nonlinearity strength, and εl are random parameters defining
the on-site energy whose values are chosen uniformly from
the interval [−W

2 , W
2 ], with W denoting again the disorder

strength. The canonical transformation ψl = (ql + ipl )/
√

2
and ψ∗

l = (ql − ipl )/
√

2 puts (3) in the form

HD =
N∑

l=1

εl

2

(
q2

l + p2
l

) + β

8

(
q2

l + p2
l

)2 − pl+1pl − ql+1ql,

(4)

in which ql and pl are, respectively, the real-valued gener-
alized position and momentum at site l. The corresponding
Hamilton equations of motion take the form

q̇l = pl

(
εl + β

q2
l + p2

l

2

)
− (pl−1 + pl+1),

(5)

ṗl = −ql

(
εl + β

q2
l + p2

l

2

)
+ (ql−1 + ql+1).

This set of equations conserves the total energy HD [Eq. (4)]
and the total norm of the system

S =
N∑

l=1

1

2

(
q2

l + p2
l

)
. (6)

In our study we follow the time evolution of initially local-
ized excitations and analyze the characteristics of the induced
wave-packet propagations. We define normalized energy

distributions ξl = [p2
l

2 + ε̃l

2 q2
l + q4

l

4 + 1
4W

(ql+1 − ql )2]/HK for
the DKG model, while for the DDNLS system we consider
normalized norm distributions ξl = (q2

l + p2
l )/(2S). We com-

pute the second moment m2 = ∑
l (l − l̄)2ξl of these distri-

butions, which measures the distributions’ extent, along with
their participation number P = 1/

∑
l ξ

2
l , which estimates the

number of the strongest excited sites. In the definitions of
these two quantities l̄ = ∑

l lξl indicates the position of the
distribution’s center.

As a measure of the systems’ chaoticity we estimate the
maximum Lyapunov exponent (MLE) �1 as the limit for t →
∞ of the finite-time MLE

�(t ) = 1

t
ln

‖w(t )‖
‖w(0)‖ , (7)

i.e., �1 = limt→∞ �(t ). In (7) w(0) and w(t ) are, respec-
tively, phase space deviation vectors from the considered orbit
at t = 0 and t > 0, while ‖ · ‖ denotes the usual Euclidian
vector norm. The MLE is a widely used chaos indicator
which measures the average rate of growth (or shrinking) of a
small perturbation to the solutions of dynamical systems. The
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� tends to zero for regular orbits following the power law
[59,60]

� ∝ t−1, (8)

while it reaches some positive constant value for chaotic ones.
The time evolution of an initial deviation vector

at time t0, w(t0) = δx(t0) = (δq(t0), δ p(t0)) =
(δq1(t0), . . . , δqN (t0), δp1(t0), . . . , δpN (t0)), from a given
orbit with initial conditions x(t0) = (q(t0), p(t0)) is defined
by the so-called variational equations (see, for example, [59]
and references therein)

ẇ(t ) =
[

˙δql (t )
˙δpl (t )

]
= [

J2N D2
H (x(t ))

] · w(t0),

(9)
l = 1, 2, . . . , N,

where J2N = [ 0N IN

−IN 0N
], with IN and 0N being the identity

and zero N × N matrices, respectively, and D2
H (x(t )) is

the 2N × 2N Hessian matrix with elements [D2
H (x(t ))]i,j =

∂2H
∂xi∂xj

|x(t ), i, j = 1, 2, . . . , N , evaluated at the reference orbit
x(t ). Equation (9) forms a set of linear equations with respect
to wi (t ), i = 1, 2, . . . , 2N [i.e., the coordinates of vector
w(t )], whose coefficients explicitly depend on the time evolu-
tion of the reference orbit. Thus, the variational equations have
to be integrated simultaneously with the system’s equations of
motion.

We perform this task by implementing the so-called
tangent map method [61–63] using symplectic integration
schemes. In particular, we integrate the DKG system by
the two-part split ABA864 symplectic integrator of order 4
[64] and the DDNLS model by the sixth-order symplectic
scheme ABC6

[SS] [65,66], which is based on the splitting
of the DDNLS Hamiltonian into three integrable parts, as
both integrators proved to be very efficient for these systems
[65–67]. Typically, we perform numerical simulations up to
a final integration time of tf ≈ 108 time units. In order to
exclude finite-size effects the number N of lattice sites was
increased up to N ≈ 7000 in some of the considered cases.
The used integration time steps τ ≈ 0.18–0.5 led to a very
good conservation of the systems’ integrals of motion, as the
absolute energy relative error was usually kept smaller than
10−5 and the absolute norm relative error of the DDNLS
system was always below 10−3. For both models we imposed
fixed boundary conditions q0 = qN+1 = p0 = pN+1 = 0.

III. NUMERICAL RESULTS

In our numerical simulations, we initially excite L consec-
utive central sites of the lattice. For the DKG model each of
these L sites gets the same amount of energy ξl by setting
pl = ±√

2ξl with randomly assigned signs, while all other
sites have pl = 0. In addition, for all lattice sites we initially
set ql = 0. In the DDNLS case each initially excited site gets
a norm ξl = 1 by setting pl = ±√

2 with a random sign for
each site. As in the case of the DKG model, for all initially
unexcited sites we set pl = 0, while we set ql = 0 for all
lattice sites. In the case of the DKG system the conserved
quantity is the total energy HK = Lξl , whose value does not
depend on the choice of the considered disorder realization,

i.e., the fixed set of random values ε̃l , l = 1, 2, . . . , N . As
the DDNLS system conserves two quantities, the energy HD

[Eq. (4)] and the norm S [Eq. (6)], the above-described
choice of initial excitations sets the numerical value of the
norm to S = L, while the exact value of HD depends on the
implemented disorder realization εl , l = 1, 2, . . . , N , as well
as the value of β.

In our analysis we consider several weak and strong chaos
cases and obtain statistical results of the behavior of a quantity
Q (e.g., m2, P , and �) by averaging its values over 100 dif-
ferent disorder realizations and by smoothing these averaged
values through a locally weighted difference algorithm [68].
The outcome of this process will be denoted by 〈Q〉. Usually
we present the time evolution of Q in log-log scale and often
estimate the related rate of change

αQ(log10 t ) = d〈log10 Q〉
d log10 t

, (10)

through a central finite-difference calculation, following the
numerical process described in [18,24]. We note that a practi-
cally constant value of αQ indicates that the time evolution of
Q is described by the power law Q ∝ tαQ .

A. Lyapunov exponents

We investigate the chaotic behavior of the DKG and the
DDNLS systems by initially considering some parameter
cases belonging to the weak chaos regime. In particular, for
the DKG system we study the following four cases.

Case W1K : W = 3, L = 37, and ξl = 0.01.
Case W2K : W = 4, L = 1, and ξl = 0.4.
Case W3K : W = 4, L = 21, and ξl = 0.01.
Case W4K : W = 5, L = 13, and ξl = 0.02.

We also investigate the following four weak chaos cases of the
DDNLS model.

Case W1D: W = 3, β = 0.03, L = 21, and ξl = 1.
Case W2D: W = 3, β = 0.6, L = 1, and ξl = 1.
Case W3D: W = 4, β = 1.0, L = 1, and ξl = 1.
Case W4D: W = 4, β = 0.04, L = 21, and ξl = 1.
It is worth noting that DKG cases W2K , W3K , and W1K

were also studied in [38], where they were named cases I,
II, and III, respectively. In that work averaged results over 50
disorder realizations for each case were presented, while here
we increase the number of realizations to 100, improving in
this way the statistical reliability of the obtained results. Let us
also note that the parameter values of the DDNLS case W4D

correspond to a well-known weak chaos case considered in
[18,24].

The results of Fig. 1 clearly verify that the considered
DKG [Figs. 1(a) and 1(c)] and DDNLS cases [Figs. 1(b) and
1(d)] belong to the weak chaos spreading regime as the time
evolution of m2 [Figs. 1(a) and 1(b)] and P [Figs. 1(c) and
1(d)] are well described by the power laws m2 ∝ t1/3 and
P ∝ t1/6 in accordance with [12,13,18,21,24]. For all these
weak chaos cases we compute in Figs. 2(a) and 2(b) the
time evolution of the averaged over disorder realizations and
smoothed � for the DKG [Fig. 2(a)] and the DDNLS system
[Fig. 2(b)]. In Figs. 2(c) and 2(d) we plot the numerically
computed derivatives [see Eq. (10)] of the curves in Figs. 2(a)
and 2(b). These results show that in all weak chaos cases
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FIG. 1. Weak chaos. Averaged (and smoothed) results over 100
disorder realizations of the time evolution of (a) and (b) the wave
packets’ second moment m2, and (c) and (d) the participation number
P for (a) and (c) the DKG, and (b) and (d) the DDNLS systems. The
straight dashed lines guide the eye for slopes (a) and (b) 1

3 and (c)
and (d) 1

6 . The presented cases are W1K , W2K , W3K , and W4K [red
(r), blue (b), green (g), and brown (br), respectively] for the DKG
system and W1D , W2D , W3D , and W4D [brown (br), green (g), blue
(b), and red (r), respectively] for the DDNLS model. All panels are
in log-log scale.

the time evolution of the finite-time MLE converges toward
the power law � ∝ t−0.25 [69]. This is in agreement with
the findings of [38], where the DKG cases W2K , W3K , and
W1K were considered, while the extra case W4K studied here
provides additional evidence of the validity of the � power-
law decay. The important result here is that this behavior is not
restricted to the DKG model, but it is more general as it is also
observed unaltered for the DDNLS model. This generality

FIG. 2. Weak chaos. Averaged (and smoothed) results over 100
disorder realizations of the time evolution of (a) and (b) the finite-
time MLE �(t ), and (c) and (d) the corresponding derivatives α�

[Eq. (10)] for (a) and (c) the DKG, and (b) and (d) the DDNLS
systems. The straight dashed lines indicate slopes α� = −0.25. The
curve colors correspond to the cases presented in Fig. 1. All panels
are in log-log scale.

implies that the specific value of �’s decrease rate (i.e., the
exponent −0.25) characterizes the weak chaos regime.

As was extensively discussed in [38], the DKG system in
the weak chaos regime becomes less chaotic in time since
the value of � follows a power-law decay. This decrease
of chaos strength can be understood in the following way.
As the wave packet spreads the (constant) total energy is
shared among more activated degrees of freedom as addi-
tional lattice sites are excited. Thus, the energy density of
the excited sites (which can be considered as the system’s
effective nonlinearity strength) decreases. Nevertheless, the
dynamics shows no signs of a crossover to regular behavior,
which is characterized by � ∝ t−1, as the computed exponent
α� [Figs. 2(c) and 2(d)] saturates at α� ≈ −0.25 �= −1. In
a similar way to the DKG energy distribution, as the DDNLS
norm distribution spreads the norm density of the excited sites
decreases and consequently the nonlinear terms β

8 (q2
l + p2

l )2

become weaker. Thus, the system becomes less chaotic and
the value of � decreases. Our results provide strong numerical
evidence that this behavior is not a particularity of the DKG
model, but it is quite general as it is manifested also in the
DDNLS system, despite the fact that this system has two
integrals of motion, the energy HD [Eq. (4)] and the norm
S [Eq. (6)].

Let us now turn our attention to the chaotic behavior of
energy or norm propagations in the strong chaos spreading
regime, an issue which was not considered in [38]. As was
explained in [18,21,24], the strong chaos subdiffusive regime
can appear in cases of multisite initial excitations. In this
regime the dynamics is characterized by an initial faster, with
respect to the weak chaos case, wave-packet spreading, where
m2 ∝ t1/2 and P ∝ t1/4. This initial phase is followed by
a subsequent slowing down of spreading, which asymptoti-
cally tends to the weak chaos behavior (i.e., m2 ∝ t1/3 and
P ∝ t1/6).

In our study we consider six strong chaos parameter cases.
Three cases are for the DKG model.

Case S1K : W = 2, L = 83, and ξl = 0.1.
Case S2K : W = 3, L = 37, and ξl = 0.1.
Case S3K : W = 3, L = 83, and ξl = 0.1.

Three cases are for the DDNLS system.
Case S1D: W = 3, β = 0.5, L = 21, and ξl = 1.
Case S2D: W = 3.5, β = 0.62, L = 21, and ξl = 1.
Case S3D: W = 3.5, β = 0.72, L = 21, and ξl = 1.

The results of Fig. 3 show that all these cases exhibit the
characteristics of strong chaos, as m2 ∝ t1/2 [Figs. 3(a) and
3(b)] and P ∝ t1/4 [Figs. 3(c) and 3(d)] for at least two
decades, for both the DKG [Figs. 3(a) and 3(c)] and the
DDNLS model [Figs. 3(b) and 3(d)]. This epoch is followed
by a mild slowing down of the spreading process for log10 t �
6. The time evolution of � in Fig. 4 shows a behavior
similar to the one observed in the weak chaos case (Fig. 2),
i.e., � eventually decreases following a power law of the
form � ∝ tα� , without showing any signs of crossover to
the law � ∝ t−1 and to regular dynamics. The difference is
that now α� ≈ −0.3 [70], while in the weak chaos case we
have α� ≈ −0.25. The appearance of the value α� = −0.3 in
both models [Figs. 4(c) and 4(d)] clearly shows the generality
of this exponent, while its clear difference from the α� =
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FIG. 3. Strong chaos. Similar to Fig. 1. The straight dashed lines
guide the eye for slopes (a) and (b) 1

2 , and (c) and (d) 1
4 . The presented

cases are (a) and (c) S1K , S2K , and S3K [blue (b), green (g), and
brown (br), respectively] for the DKG system, and (b) and (d) S1D ,
S2D , and S3D (green, red, and brown, respectively) for the DDNLS
model.

−0.25 value observed in the weak chaos case is an additional
indication of the dynamical differences of the two regimes.

As the strong chaos regime is a transient one, the evolutions
of m2 and P show signs of the crossover to the weak chaos
dynamics, as their increase becomes slower for log10 t � 6
(Fig. 3). This happens because the values of m2 and P

are determined by the current dynamical state of the wave
packet. On the other hand, such changes are not visible in
the evolution of � (Fig. 4). As the dynamics crosses over
from the strong chaos behavior characterized by α� = −0.3
to the asymptotic weak chaos behavior associated with α� =
−0.25, one would expect to see some change in the values
of α� [Figs. 4(c) and 4(d)] indicating this transition. Such
changes are not observed because the value of � [Eq. (7)] is
influenced by the whole evolution of the deviation vector [i.e.,
the ratio ‖w(t )‖/‖w(0)‖ in (7)] and consequently the whole
history of the dynamics (which is predominately influenced

FIG. 4. Strong chaos. Similar to Fig. 2. The straight dashed lines
indicate slopes α� = −0.3. The various curves correspond to the
cases presented in Fig. 3.

FIG. 5. Weak chaos in the DKG model. The dynamics of a
representative initial condition of the W1K case for one disorder
realization. Time evolution of (a) the normalized energy distribution
ξl and (b) the corresponding DVD. The color scales at the top of
the figure are used for coloring lattice sites according to their (a)
log10 ξl and (b) log10 ξD

l values. In both panels a white curve traces
the distributions’ center. Normalized (c) energy distributions ξl and
(d) DVDs at times log10 t = 6.14, log10 t = 7.47, and log10 t = 8.65
[green (g); black (bl); red (r), respectively]. These times are also
denoted by similarly colored horizontal dashed lines in (a) and (b).

by the strong chaos behavior), and not from the current state
of the systems. Thus, � is not sensitive to subtle dynamical
changes. In the next section we will present some ways to
capture such changes in the systems’ chaotic behavior.

B. Deviation vector distributions

In order to analyze the dynamics of chaos evolution in
the DKG and the DDNLS models we also compute the
normalized DVD

ξD
l (t ) = δql (t )2 + δpl (t )2∑

l[δql (t )2 + δpl (t )2]
, l = 1, 2, . . . , N, (11)

created by the time evolution of the vector w(t ) used for the
computation of � [Eq. (7)]. Since w(t ) eventually aligns with
the most unstable direction in the system’s phase space (which
corresponds to the MLE), large ξD

l values indicate at which
lattice sites the sensitive dependence on initial conditions is
higher. For this reason, such distributions were used in [38]
to visualize the motion of chaotic seeds inside the spreading
wave packet.

In Fig. 5(a) [Fig. 6(a)] we plot the time evolution of the
energy density ξl for the DKG system (norm density ξl for
the DDNLS model) for an individual setup belonging to the
W1K (W4D) weak chaos case, while in Fig. 5(b) [Fig. 6(b)]
the evolution of the corresponding DVD density is shown.
In Figs. 5(c) and 5(d) [Figs. 6(c) and 6(d)] snapshots of
these distributions taken at the instances denoted by horizontal
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FIG. 6. Weak chaos in the DDNLS system. The dynamics of a
representative initial excitation of the W4D case for one disorder
realization. All panels are similar to the ones of Fig. 5, with norm
(instead of energy) distributions plotted in (a) and (c). The distribu-
tion snapshots in (c) and (d) are taken at times log10 t = 4.8, log10 t =
6.82, and log10 t = 7.94 [green (g); black (bl); red (r), respectively].

dashed lines in Figs. 5(a) and 5(b) [Figs. 6(a) and 6(b)] are
shown.

From the results of Figs. 5 and 6 we see that for both
the DKG and the DDLNS models the energy or norm den-
sities expand continuously to larger regions of the lattice.
This spreading is done more or less symmetrically around
the position of the initial excitation as the evolution of the
distributions’ mean position [white curve in Figs. 5(a) and
6(a)] is rather smooth, always remaining close to the lattice’s
center. On the other hand, the DVDs, which stay always inside
the excited part of the lattice, retain a more localized pointy
shape. At first the DVDs are located in the region of the
initial excitation but they start moving around widely after
log10 t ≈ 6, something which is clearly depicted in the time
evolution of each DVD’s mean position l̄w = ∑

l lξ
D
l [white

curve in Figs. 5(b) and 6(b)], as l̄w shows random fluctuations
with increasing amplitude. These results indicate that the
observed behavior (which was initially reported in [38] for
the DKG system) is generic as it appears also for the DDNLS
model. Based on such observations, the authors of [38] used
DVDs to represent the random motion of deterministic chaotic
seeds inside the wave packet. These random oscillations of
the chaotic seeds are essential in homogenizing chaos inside
the wave packet, supporting in this way the wave packet’s
thermalization and subdiffusive spreading.

For the created DVDs we also compute the time evolution
of their second moment mD

2 and participation number P D .
Moreover, in order to quantify the range of the lattice region
visited by the meandering localized DVD, we follow the
evolution of the quantity

R(t ) = max
[0,t]

{l̄w(t )} − min
[0,t]

{l̄w(t )}. (12)

FIG. 7. DVD characteristics in the weak chaos regime. Time evo-
lution of the averaged (and smoothed), over 100 disorder realizations,
(a) and (b) second moment mD

2 , (c) and (d) participation number P D ,
and (e) and (f) R [Eq. (12)]. The numerically computed derivatives
αR [Eq. (10)] of curves in (e) and (f) are respectively plotted in (g)
and (h). Left panels contain results for the DKG model with curve
colors corresponding to the cases presented in the left panels of
Fig. 1. Results for the DDNLS model are presented in the right panels
with curve colors corresponding to the cases considered in the right
panels of Fig. 1. The straight dashed lines in (a) and (b) correspond to
slope 0.14 and in (e)–(h) indicate the slope αR = 0.24. All horizontal
axes are logarithmic. Panels (a)–(f) are in log-log scale.

The obtained results are presented in Fig. 7 for the weak chaos
cases of both the DKG [Figs. 7(a), 7(c), 7(e), and 7(g)] and the
DDNLS systems [Figs. 7(b), 7(d), 7(f), and 7(h)] considered
in Sec. III A. The DVDs’ second moment [Figs. 7(a) and
7(b)] shows an asymptotic slow growth (mD

2 ∝ t0.14), reaching
values which are always smaller than the wave packets’ m2

[Figs. 1(a) and 1(b)] by at least one order of magnitude. The
fact that the DVDs of Figs. 5 and 6 retain a rather narrow
pointy shape remaining practically localized (although the
place of their localization changes) is clearly reflected in their
small and almost constant P D values [Figs. 7(c) and 7(d)].
For both the DKG and the DDNLS models P D attains small
values (in the worst case of the order of P D ≈ 20 for W2D),
showing a tendency to asymptotically saturate to a constant
number, since all curves of Figs. 7(c) and 7(d) show signs of
an eventual leveling off.

Thus, apart from the DVDs’ profiles [Figs. 5(b), 5(d),
6(b), and 6(d)], the slow increase of mD

2 [Figs. 7(a) and
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FIG. 8. Strong chaos in the DKG model. Similar to Fig. 5, but
for a representative initial condition of the S3K case. The distribution
snapshots in the (c) and (d) are taken at times log10 t = 6.2, log10 t =
7.2, log10 t = 7.9 [green (g); black (bl); red (r), respectively].

7(b)] and the practical constancy of P D [Figs. 7(c) and 7(d)]
clearly show that the chaotic seeds retain a very localized
character. Since the wave packet itself spreads continuously,
the localized chaotic seeds, which constantly meander inside
it, have to cover larger lattice regions as time increases. This
becomes evident by the continuously increasing values of R

[Eq. (12)] [Figs. 7(e) and 7(f)]. This increase is very well
described, for both the DKG and the DDNLS models, by
the power law R ∝ tαR [Figs. 7(e) and 7(f)] with αR ≈ 0.24
[Figs. 7(g) and 7(h)].

Let us now investigate how chaotic seeds behave in the
strong chaos regime. In Figs. 8(a) and 8(b) [Figs. 9(a) and
9(b)] we plot, respectively, the time evolution of the energy
(norm) density and the corresponding DVD for an individ-
ual S3K (S3D) setup, while snapshots of these distributions
at some specific times are shown in Figs. 8(c) and 8(d)
[Figs. 9(c) and 9(d)].

As in the weak chaos cases of Figs. 5 and 6, the energy
or norm density spreads smoothly and rather symmetrically
around the lattice’s center [Figs. 8(a), 8(c), 9(a), and 9(c)],
reaching sites further away with respect to the weak chaos
cases [Figs. 5(a), 5(c), 6(a), and 6(c)]. This is due to the
fact that the strong chaos regime is characterized by a faster
subdiffusive spreading than the one observed in the weak
chaos case, which is reflected in the larger exponents in
the power-law increases of m2 and P (Figs. 1 and 3). On
the other hand, the DVDs remain again localized, exhibiting
fluctuations in their position, which appear earlier in time and
have larger amplitudes [Figs. 8(b), 8(d), 9(b), and 9(d)] with
respect to the weak chaos case [Figs. 5(b), 5(d), 6(b), and
6(d)].

The DVDs’ mD
2 [Figs. 10(a) and 10(b)] increases in time,

attaining larger values with respect to the weak chaos regime
[Figs. 7(a) and 7(b)], although this increase does not show
signs of a constant rate (in log-log scale) as in the weak chaos

FIG. 9. Strong chaos in the DDNLS model. Similar to Fig. 6, but
for a representative initial condition of the S3D case. The distribution
snapshots in (c) and (d) are taken at times log10 t = 6.01, log10 t =
6.54, and log10 t = 7.24 [green (g); black (bl); red (r), respectively].

case where mD
2 ∝ t0.14. In addition, a slowing down of the

increase rate is observed at higher times especially for the
DDNLS system [Fig. 10(b)]. The fact that the DVDs remain
localized is depicted in the clear tendency of their P D to
saturate to values a little bit higher than the ones observed
in the weak chaos case, as we get at most P D ≈ 25.

Since the wave packet spreads faster in the strong chaos
case than in the weak chaos one, while the DVD remains
again localized, one would expect faster and wider movements
of the chaotic seeds in order to achieve the wave packet’s
chaotization. The inspection of the l̄w motion [white curves
in Figs. 8(b) and 9(b)], as well as the evolution of R [Eq. (12)]
[Figs. 10(e) and 10(f)] and its derivative [Figs. 10(g) and
10(h)], shows that this is true. The R grows faster than the
R ∝ t0.24 increase observed in the weak chaos case [Figs. 7(e)
and 7(f)], reaching also larger values by about one order of
magnitude. The fact that the strong chaos regime is a transient
one, as the dynamics will eventually cross over to the weak
chaos spreading, is also reflected in the behavior of R as
its derivative αR decreases in time [Figs. 10(g) and 10(h)],
indicating the slowing down of the chaotic seeds’ movement.
For large times αR show a tendency to reach values which
are comparable to the αR = 0.24 [horizontal dashed line in
Figs. 10(g) and 10(h)] seen in the weak chaos regime.

IV. SUMMARY AND DISCUSSION

We numerically investigated the chaotic behavior of one-
dimensional nonlinear disordered lattices when Anderson
localization is destroyed and spreading takes place. In our
study we considered two basic lattice models, which have
been studied intensively in the past decade, the DKG and the
DDNLS systems, and investigated their chaotic behavior in
the weak and strong chaos spreading regimes. In particular, we
performed extensive simulations of the chaotic propagation
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FIG. 10. DVD characteristics in the strong chaos regime. Similar
to Fig. 7, but for the strong chaos cases presented in Fig. 3. The
horizontal dashed lines in (g) and (h) indicate the slope αR = 0.24 as
in Figs. 7(g) and 7(h).

of initially localized excitations, for several weak and strong
chaos parameter cases of these systems, and obtained statisti-
cal results on ensembles of 100 disorder realizations in each
case.

By computing the most commonly employed chaos in-
dicator, the finite-time MLE �, we provided clear evidence
that although the chaoticity strength of the propagating wave
packets decreases in time, the dynamics retains its chaotic
nature without any signs of a crossover to regular behavior.
More specifically, we found that for both models and dynam-
ical regimes � decreases by following a power law � ∝ tα� ,
which is characterized by α� values different from α� = −1
observed for regular motion. Moreover, the weak and strong
chaos cases exhibit different α� values, which remain the
same for both systems studied, something which indicates the
generality of these exponent values. In particular, we found
that α� ≈ −0.25 for the weak chaos regime (in agreement
with the results of [38]), while α� ≈ −0.3 for the strong chaos
regime. These particular values are related to the dynamical
characteristics of each regime, but a theoretical explanation of
this connection is still lacking.

Although the wave-packet spreading remains chaotic, an
important question is whether the wave packet’s chaotization
occurs fast enough to support its subdiffusive spreading. A
way to tackle this question is by comparing the chaoticity

timescale, which is usually called Lyapunov time TL (see, for
example, [59] and references therein) and is estimated as

TL ∼ 1

�
, (13)

with some characteristic timescales related to the wave-packet
spreading. The latter can be done in two ways. Assuming that
the spreading is characterized by an asymptotic momentary
diffusion coefficient D such that m2 ∼ Dt , then a characteris-
tic spreading timescale TM can be obtained as

TM ∼ 1

D
. (14)

Alternatively, one could define a spreading timescale TP as
the time required to increase the wave packet’s participation
number P by one so that

TP ∼ 1

Ṗ
, (15)

with Ṗ being the time derivative of P .
For both the weak and the strong chaos regimes we have

m2 ∝ ta and P ∝ ta/2 [12,13,18,21,24], while our results
show that � ∝ tα� . Then the ratios

TM

TL

∼ t1+α�−a,
TP

TL

∼ t1+α�−a/2 (16)

become
TM

TL

∼ t5/12,
TP

TL

∼ t7/12 (17)

for the weak chaos regime, for which a = 1/3 and α� =
−0.25, and

TM

TL

∼ t1/5,
TP

TL

∼ t9/20 (18)

for the strong chaos case characterized by a = 1/2 and
α� = −0.3. Thus, the chaoticity timescale TL remains always
smaller than the spreading timescales TM and TP , which
implies that the wave packet’s chaoticization is faster than its
spreading.

The computation of the corresponding DVDs created by
the deviation vector used to compute � and of quantities
related to their dynamics (mD

2 , P D , and R) allowed us to better
capture the instantaneous features of the underlying chaotic
behavior and to visualize the meandering motion of chaotic
seeds inside the wave packet. In all cases studied the DVD
retained a localized pointy shape with its participation num-
ber P D remaining asymptotically constant to P D ≈ 20–25.
As time increased the DVD exhibited oscillations of larger
amplitudes in order to visit all regions inside the spreading
wave packet. Consequently, the quantity R [Eq. (12)], which
tries to quantify the range of the lattice region visited by
the DVD, increased in time. This increase is asymptotically
characterized by a power-law growth, R ∝ t0.24, in the weak
chaos regime for both the DKG and the DDNLS systems. On
the other hand, in the strong chaos case R grows with a higher
but nonconstant rate since the wave packet spreads faster than
in the weak chaos case and the DVD visits a wider region.
It is worth noting that this rate decreases in time, tending
to the value 0.24 observed in weak chaos regime. This is a
direct consequence of the transient nature of the strong chaos
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regime, as this regime eventually crosses over toward the weak
chaos dynamics.

In conclusion, extending and completing previous results
on the chaotic behavior of disordered lattices [38], we nu-
merically verified, for both the DKG and the DDNLS model
and the weak and strong chaos spreading regimes, that (a) the
deterministic chaoticity of the wave-packet dynamics persists
in time, although its strength decreases, (b) chaotic seeds
meander inside the wave packet fast enough to ensure its
chaotization, and (c) the characteristics of chaos evolution
(for example, the power law � ∝ tα�) in the weak and strong
chaos regimes are distinct for each case (e.g., α� ≈ −0.25 for
weak chaos and α� ≈ −0.3 for strong chaos), but also general
as they are obtained for both models studied.

An open question for future studies is the theoretical de-
termination of the particular values of the exponent α� for
each dynamical regime. Another interesting problem is the
investigation of the chaotic behavior of disordered lattices of
higher dimensionality, in the spirit of the studies presented
here. Some preliminary investigations [see Fig. 4(e) of [67]]
showed that in the weak chaos regime of a two-dimensional
DKG system � decreases to zero by following a power law

which is again different from the t−1 law observed for regular
motion. A more systematic study of such questions for both
the weak and strong chaos regimes in various models of
two-dimensional disordered lattices is left for future work.
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